
AIJRA Vol. V Issue I www.ijcms2015.co  ISSN 2455-5967 

 

 Investigating Special Function Relationships within Cantor Sets and Special Integral 
Transformations  

Dr. Sanjeev Tyagi 

 

35.1 

Investigating Special Function Relationships within Cantor Sets and 
Special Integral Transformations Using Local Fractional Operators  

 
 

 
*Dr. Sanjeev Tyagi   

Abstract 

Investigated are the mappings for a few unique functions on Cantor sets. Three local fractional 
differential equations were then solved using the local fractional Fourier series, Fourier transforms, 
and Laplace transforms, and the related nondifferentiable solutions were provided. 
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Introduction  

Special functions play a significant role in mathematical analysis, function analysis, physics, and 
various other fields. Notable examples include the Gamma function, hypergeometric function, Bessel 
functions, Whittaker function, G-function, q-special functions, Fox’s H-functions, Mittag-Leffler 
function, and Wright’s function. 

The Mittag-Leffler function has proven to be valuable in addressing practical problems. It has been 
applied to various scenarios, such as solving fractional evolution processes and providing solutions 
for fractional reaction-diffusion equations. Additionally, it has been used to establish the stability of 
fractional order nonlinear dynamic systems and model anomalous relaxation in dielectrics. 
Applications in continuous-time finance and fractional radial diffusion in a cylinder have also been 
explored, along with the Mittag-Leffler stability theorem for fractional nonlinear systems with delay. 
Stochastic linear Volterra equations of convolution type have been formulated based on the Mittag-
Leffler function. 

Recently, a novel approach utilizing Mittag-Leffler functions on Cantor sets, employing fractal 
measures, led to the development of special integral transforms grounded in local fractional calculus 
theory. This work explores applications of the local fractional calculus theory. 

The primary objective of this paper is to investigate mappings associated with special functions 
defined on Cantor sets and to explore the practical applications of special integral transforms for 
addressing problems that lack differentiability. 

The paper's structure is as follows:  

Section 2 delves into the investigation of mappings for special functions defined on Cantor sets. 



AIJRA Vol. V Issue I www.ijcms2015.co  ISSN 2455-5967 

 

 Investigating Special Function Relationships within Cantor Sets and Special Integral 
Transformations  

Dr. Sanjeev Tyagi 

 

35.2 

Section 3 covers special integral transforms within the context of local fractional calculus theory and 
their applications in addressing problems with nondifferentiable characteristics. 

Section 4, the paper concludes with a summary of key findings and implications. 

2. Mappings for Special Functions on Cantor Sets 

In order to give the mappings for special functions on Cantor sets, we first recall some basic 
definitions about the fractal measure theory. Let Lebesgue-Cantor staircase function be defined as 

(1) 

where 𝐹 is a cantor set, 𝐻𝛼(⋅) is the 𝛼-dimensional Hausdorff measure,  0𝐼𝑥
(𝛼)
(⋅) is local fractional 

integral operator [24-31], and Γ(⋅) is a Gamma function. 
Following (1), we obtain 

𝐻𝛼(𝐹  (   ))   
𝛼    (2) 

which is a Lebesgue-Cantor staircase function. For its graph 

In this way, we define some real-valued functions on Cantor sets as follows. 
The Cantor staircase function is defined as 

 ( )    𝛼    (3) 

And its graph is shown in Figure 1. 
The Mittag-Leffler functions on Cantor sets are given by  

 𝛼( 
𝛼)  ∑   

  0
𝑥  

 (   𝛼)
   (4) 

and we draw the corresponding graph in Figure 2. 
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The sine on Cantor sets is defined by  

   𝛼   
𝛼  ∑   

  0 (  )
 𝑥 (    )

 ,  𝛼(    )-
   (5) 

and its corresponding graph is depicted in Figure 3. 
The cosine on Cantor sets is  

   𝛼  
𝛼  ∑   

  0 (  )
 𝑥   

 (   𝛼 )
  (6) 
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with graph in Figure 4. 
Hyperbolic sine on Cantor sets is defined by  

    𝛼  
𝛼  ∑   

  0
𝑥 (    )

 ,  𝛼(    )-
  (7) 

and we draw its graphs as shown in Figure 5. 
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Hyperbolic cosine on Cantor sets is defined as 

    𝛼  
𝛼  ∑   

  0
𝑥   

 (   𝛼 )
  (8) 

and its graph is shown in Figure 6. 
Following (4)-(8), we have 

 𝛼( 
𝛼 𝛼)     𝛼  

𝛼   𝛼   𝛼  
𝛼    (9) 

where  𝛼 is a fractal unit of an imaginary number. 
If for       and        ( ) satisfies the condition 

| ( )   ( 0)|   
𝛼   (10) 

for   ,   - we write it as follows: 

 ( )   𝛼(   )   (11) 

 

3. Special Integral Transforms within Local Fractional Calculus 

In this section, we introduce the conceptions of special integral transforms within the local fractional 
calculus concluding the local fractional Fourier series and Fourier and Laplace transforms. After that, 
we present three illustrative examples. 

3.1. Definitions of Special Integral Transforms within Local Fractional Calculus. We here present 
briefly some results used in the rest of the paper. 

Let  ( )   𝛼(    ). Local fractional trigonometric Fourier series of  ( ) 

 ( )   0  ∑   
         𝛼 ( 

𝛼 0
𝛼 𝛼)

  ∑   
         𝛼 ( 

𝛼 0
𝛼 𝛼) 

  (12) 
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The local fractional Fourier coefficients read as 

 0  
 

  
∫  
 

0
  ( )(  )𝛼  

   .
 

 
/
𝛼

∫  
 

0
  ( )   𝛼  ( 

𝛼 0
𝛼 𝛼)(  )𝛼  

   .
 

 
/
𝛼

∫  
 

0
  ( )   𝛼  ( 

𝛼 0
𝛼 𝛼)(  )𝛼  

  (13) 

We notice that the above results are obtained from Pythagorean theorem in the generalized Hilbert 
space. 

Let  ( )   𝛼(    ). The local fractional Fourier transform of  ( ) 

𝐹𝛼* ( )+     
  𝛼( )

  
 

 (  𝛼)
∫
  

 
  𝛼(  

𝛼 𝛼 𝛼) ( )(  )𝛼
  (14) 

The inverse formula is expressed as follows: 

 ( )   𝐹𝛼
  (  

 𝛼( ))

  
 

(  ) 
∫  
 

  
  𝛼( 

𝛼 𝛼 𝛼)  
 𝛼( )(  )𝛼  

 (15) 

Let  ( )   𝛼(    ). The local fractional Laplace transform of  ( ) is defined as ,        - 

 𝛼* ( )+     
  𝛼𝑥( )

  
 

 (  𝛼)
∫  
 

0
  𝛼(  

𝛼 𝛼) ( )(  )𝛼  
 (16) 

The inverse formula local fractional Laplace transform of  ( ) is derived as ,        - 

 ( )    𝛼
  {  

  𝛼( )}

  
 

(  ) 
∫  
    

    
  𝛼( 

𝛼 𝛼)  
  𝛼( )(  )𝛼  

 (17) 

where  ( ) is local fractional continuous,  𝛼   𝛼   𝛼 𝛼 , and    ( )     . 

For more details of special integral transforms via local fractional calculus, see and the references 
therein. 

 
3.2. Applications of Local Fractional Fourier Series and Fourier and Laplace Transforms to the 
Differential Equation on Cantor Sets. We now present the powerful tool of the methods presented 
above in three illustrative examples. 

Example 1. Let us begin with the local fractional differential equation on Cantor set in the following 
form: 
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  𝑥
   y ( )   ( )    (     )  (18) 

where   and   are constants and the nondifferentiable function  ( ) is periodic of period    so that 
it can be expanded in a local fractional Fourier series as follows: 

 ( )  ∑   
      𝛼  ( 

𝛼 𝛼)  (19) 

Here, we give a particular solution in the following form: 

  ( )   0  ∑   
         𝛼  ( 

𝛼 𝛼)

  ∑   
         𝛼 ( 

𝛼 𝛼) 
 (20) 

Following (20), we have 

  
(𝛼)
( )   ∑   

        
𝛼   𝛼 ( 

𝛼 𝛼)

  ∑   
       

𝛼   𝛼 ( 
𝛼 𝛼) 

 (21) 

Submitting (20)-(21) into (18), we obtain 

 (∑   
       

𝛼   𝛼  ( 
𝛼 𝛼)

 ∑   
       

𝛼   𝛼  ( 
𝛼 𝛼))

   ( 0  ∑   
         𝛼  ( 

𝛼 𝛼)

 ∑   
         𝛼 ( 

𝛼 𝛼))

  ∑   
       𝛼 ( 

𝛼 𝛼) 

 (22) 

Hence, we get 

 0    

    
𝛼        

    
𝛼        

 (23) 

Therefore, we can calculate 

 0    

    
 

        
 

   
   

        
 

 (24) 

In view of (24), we give the solution of (18) as follows: 

  ( )    ∑   
    

 

        
   𝛼 ( 

𝛼 𝛼)

  ∑   
    

   

        
   𝛼 ( 

𝛼 𝛼) 
 (25) 

Example 2. We now consider the following differential equation on Cantor sets: 
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   𝑥

    
     ( )           (26) 

subject to the initial value condition 
  𝑥

   
|
  0

     ( )     (27) 

where   is constant and  ( ) is the local fractional continuous function so that its local fractional 
Fourier transform exists. 
Application of local fractional Fourier transform gives 

   𝛼  
  𝛼( )     

  𝛼( )    
  𝛼( )  (28) 

so that 

(   𝛼   )  
  𝛼( )    

  𝛼( )  (29) 

From (29), we have 

  
  𝛼( )  

  
   ( )

(      )
  (30) 

Therefore, taking the inverse formula of local fractional Fourier transform, we have 

 ( )   
  (   )

 (  𝛼)
∫  
 

  
 (   )   𝛼 ( 

    𝛼)(  )𝛼   (31) 

Example 3. Let us find the solution to the differential equation on Cantor sets 

   𝑥

    
 
  𝑥

   
     ( )       (32) 

subject to the initial value condition 
  𝑥

   
|
  0

     ( )     (33) 

where  ( ) is the local fractional continuous function so that its local fractional Laplace transform 
exists. 

Taking the local fractional Laplace transform, from (32), we have 

(  𝛼  
  𝛼( )   𝛼 ( )   (𝛼)( ))  ( 𝛼  

  𝛼( )   ( ))

     
  𝛼( )    

  𝛼( ) 
 (34) 

so that 

  
  𝛼( )  

  
   ( )

        
   (35) 

When the local fractional convolution of two functions is given by [24] 

  ( )    ( )  
 

 (  𝛼)
∫  
 

0
  (   )  ( )(  )

𝛼 (36) 

and the local fractional Laplace transform of   ( )    ( ) is [24] 
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 𝛼*  ( )    ( )+      
  𝛼( )    

  𝛼( )  (37) 

the inverse formula of the local fractional Laplace transform together with the local fractional 
convolution theorem gives the solution 

 ( )  
 

 (  𝛼)
∫  
 

0
 (   )( 𝛼(   

𝛼)   𝛼( 
𝛼))(  )𝛼   (38) 

4. Conclusions  

In this study, we explored the relationships between special functions defined on Cantor sets and 
specific integral transformations employing local fractional calculus techniques. Specifically, we 
examined the local fractional Fourier series, Fourier transforms, and Laplace transforms. These 
transformative methods were effectively employed to address three distinct local fractional 
differential equations, resulting in the identification of solutions characterized by their 
nondifferentiable properties. 
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