
AIJRA Vol. VII Issue I www.ijcms2015.co  ISSN 2455-5967 

 

 Deriving RL-Monoids Through Subtraction     

Dr. Sanjeev Tyagi 

 

33.1 

Deriving RL-Monoids Through Subtraction  
 
 

 
*Dr. Sanjeev Tyagi   

Abstract 

This paper aims to introduce the concept of subtractive derivations and explore their algebraic 
characteristics within the context of RL-monoids. Additionally, we provide certain descriptions of 
subtractive derivations within the Godel center. Furthermore, we identify Godel algebras through a 
fixed set of subtractive derivations. Lastly, we examine the interplay between subtractive derivations 
and other types of derivations in RL-monoids. These findings contribute to our understanding of the 
shared properties of subtractive derivations in t-norm-based fuzzy logical algebras. 

Introduction 

Residuated lattice ordered monoids (abbreviated as "RL-monoids") were first introduced by Swamy 
as a unifying concept encompassing both Abelian lattice ordered groups and Heyting algebras. 
Additionally, RL-monoids are closely connected to algebras in t-norm-based fuzzy logics, with BL 
algebras and MV-algebras being specific instances of such algebras. It's important to highlight that 
many properties characteristic of BL-algebras apply to all RL-monoids. Consequently, RL-monoids 
can be considered as an algebraic framework for a more comprehensive logic than Hájek's basic fuzzy 
logic, underscoring their significance in the study of fuzzy logic. 

The concept of derivations plays a pivotal role in exploring the properties and structures of fuzzy 
logical algebraic systems. Posner, in 1957, investigated various types of derivations in prime rings 
along with their fundamental algebraic characteristics. Subsequently, Borzooei et al. provided 
characterizations of p-semisimple BCI-algebras through derivations with respect to BCI-algebras 
featuring derivations. In 2008, Xin et al. characterized modular and distributive lattices using isotone 
derivations in lattices with derivations. Furthermore, Alshehri et al. delved into derivations on MV-
algebras, outlining conditions under which an additive derivation is also isotone for a linearly 
ordered MV-algebra. In 2013, Lee et al. introduced and studied derivations and f-derivations in lattice 
implication algebras, exploring their relationships with filters. In 2016, He et al. investigated different 
types of derivations in residuated lattices and provided characterizations of Heyting algebras in 
terms of these derivations. In 2017, Hua studied derivations in R_0-algebras, which are equivalent to 
NM-algebras, and examined the connection between filters and the fixed point set of these 
derivations. Lastly, in 2022, Liu conducted a study on implicative derivations in MTL-algebras and 
provided characterizations of them based on these types of derivations. 

This paper is motivated by the following considerations: prior research on derivations in t-norm-
based fuzzy logical algebras has mainly focused on multiplicative derivations and implicative 
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derivations, which are two specific types of maps that satisfy certain properties. 

𝑑(𝑥 ⊗ 𝑦) = (𝑑(𝑥) ⊕ 𝑦) ⊎ (𝑥 ⊛ 𝑑(𝑦)), (multiplicative derivation), 

𝑑(𝑥 ⊗ 𝑦) = (𝑑(𝑥) ↪ 𝑦)((𝑥 ↪ 𝑑(𝑦)), (implicative derivation).  (1) 

However, there has been limited research conducted on derivations defined in conjunction with the 
"m" operation and various other operations within the realm of residuated structures. However, this 
aspect warrants investigation, as it offers the potential for a more comprehensive exploration within 
algebraic structures through the incorporation of additional operations. Consequently, it becomes 
intriguing to delve into the examination of these types of derivations within the context of fuzzy 
logical algebras.  

Taking these considerations into account, we propose a novel form of derivation known as 
"subtractive derivation" for RL-monoids and conduct an exploration of certain algebraic properties 
associated with them. The structure of this paper unfolds as follows: In Section 2, we provide an 
overview of fundamental concepts and definitions pertinent to RL-monoids. Section 3 introduces the 
concept of subtractive derivation within RL-monoids and offers several characterizations of these 
derivations. In Section 4, we delve into the relationship between the fixed point set of subtractive 
derivations and the ideals within RL-monoids. Finally, in Section 5, we examine the connections 
between subtractive derivations and other types of derivations, such as multiplicative derivations and 
implicative derivations, within the context of RL-monoids. 

2.Preliminaries 
First, some basic notions of Rℓ-monoids and their related algebraic results are presented. 

Definition 1 (see [9]). An algebra (ℋ,∙, ↪, 𝟞, 𝕨, 0,1) is said to be a residuated lattice if 
(1) (ℳ, 𝐦, 𝑤, 0,1) is a bounded lattice, 

(2) (𝒜,⊕ ,1) is a commutative monoid, 

(3) 𝑢 ⊕ 𝑣 ≤ 𝑤 iff 𝑢 ≤ 𝑣 ↪ 𝑤, for any 𝑢, 𝑣, 𝑤 ∈ 𝐿. 

By 𝒜 we mean that the universe of a residuated lattice (ℳ,⊕, ↪, 𝕝, 𝑤, 0,1). On ℳ, we define 

𝑢 ≤ 𝑣 iff 𝑢 ↪ 𝑣 = 1. (2) 

Then, ≤ is a binary partial order on ℳ and for 𝑢 ∈ ℳ, 0 ≤ 𝑢‾ ≤ 1. 

A residuated lattice ℋ is an 𝑅ℓ-monoid if it satisfies the divisibility equation 

(DIV) 𝑢 角 𝑣 = 𝑢 ⇔ (𝑢 ↪ 𝑣). (3) 

An 𝑅ℓ-monoid 𝒰 is a Godel algebra if it satisfies  

 (IDE) 𝑢 ⊕ 𝑢 = 𝑢.  (4) 
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We denote the set *𝑢 ∣ 𝑢 ⊕ 𝑢 = 𝑢+ of ℳ by ℱ(ℳ). 
In every 𝑅ℓ-monoid, we define the operation as follows:  

𝑢 ⊟ 𝑣 = 𝑢 ⊕ 𝑣⋆, (5) 

where 𝑣⋆ = 𝑣 ↪ 0. 

Proposition 1 (see [1]). The following hold in 𝑅ℓ-monoid ℳ, for all 𝑢, 𝑣, 𝑤 ∈ ℳ : 

 (1)𝑢 ⊟ 0 = 𝑢, 0 ⊟ 𝑢 = 0, 𝑢 ⊟ 𝑢 = 0,1 ⊟ 𝑢 = 𝑢∗, 𝑢 ⊟ l = 0, 
(2)𝑢 ↪ (𝑣 → 𝑤) = (𝑢 ⊕ 𝑣) ↪ 𝑤 = 𝑣 ↪ (𝑢 ↪ 𝑤), 
(3) if  𝑢 ≤ 𝑣,   then  𝑣 ↪ 𝑤 ≤ 𝑢 ↪ 𝑤, 𝑤 ↪ 𝑢 ≤ 𝑤 ↪ 𝑣, 𝑢 ⊗ 𝑤 ≤ 𝑣𝜙𝑤, 𝑢 ⊟ 𝑤 ≤ 𝑣 ⊟ 𝑤, 𝑤 ⊟ 𝑣 ≤ 𝑢 ⊟ 𝑢, 
(4)𝑢 ⊕ 𝑣 ≤ 𝑢 m 𝑣 ≤ 𝑢, 𝑣 ≤ 𝑢𝜔𝑣 ≤ 𝑢 ⊞ 𝑣,  

(5) 𝑢 ⊟ 𝑣 ≤ 𝑢, 𝑢 ⊟ 𝑣 ≤ 𝑣, 

(6) 𝑢 ⊕ 𝑢∗ = 0, 𝑢 ⊕ 0 = 0, 

(7) 𝑢 ≤ 𝑣 iff 𝑢 ⊙ 𝑣∗ = 0 iff 𝑢 ⊟ 𝑣 = 0, 

(8) (𝑢 ⊟ 𝑣) ⊟ 𝑤 = (𝑢 ⊟ 𝑤) ⊟ 𝑣. 

Definition 2 (see [24]). A nonempty subset 𝐼 of an 𝑅ℓ -monoid 𝒜 is an ideal if it satisfies the 
following conditions: 

(1) if 𝑢 ≤ 𝑣 and 𝑣 ∈ 𝐼, then 𝑢 ∈ 𝐼, 

 (2) if 𝑢, 𝑣 ∈ 𝐼, then 𝑢𝜔𝑣 ∈ 𝐼. 

Definition 3 (see [15]). A self-map 𝑑 on an 𝑅ℓ-monoid ℳ is called a lattice derivation if it satisfies, 
for any 𝑢, 𝑣 ∈ ℳ, 

d(u ⋒ v) = (du ⋒ v) ⋓ u ⋒ dy). (6) 

Definition 4 (see [24]). A self-map 𝑑 on an 𝑅ℓ-monoid ℋ is called a multiplicative derivation if it 
satisfies, for any 𝑢, 𝑣 ∈ ℳ, 

𝑑(𝑢 ⊕ 𝑣) = (d𝑢 ⊙ 𝑣)𝑤𝑢 ⊕ d𝑣).(7) 

Proposition 2 (see [22]). A self-map 𝑑𝑎: ℳ ⟶ ℳ 

𝑑𝑎𝑢 = 𝑎 ⊕ 𝑢.  (8) 

On an 𝑅ℓ-monoid 𝒜 is a multiplicative derivation. 

3. Subtractive Derivations of 𝐑𝓵-Monoids 

Then, we introduce a new kind of derivations on Rℓ -monoids and give some characterizations of 
them. 
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Definition 5. Let ℋ be an Rℓ-monoid. A mapping 𝑑: 𝐿 ↪ 𝐿 is called a subtractive derivation on 𝒰 if 

𝑑(𝑢 ⊟ 𝑣) = (d𝑢 ⊟ 𝑣) ⊕ (𝑢 ⊟ d𝑣), (9) 

for any 𝑢, 𝑣 ∈ ℳ. 

We will denote by 𝒟(ℋ) to be the set of all subtractive derivations of 𝒜. 

Some examples of subtractive derivations on Rℓ-monoids are presented. 

Example 1. Let ℋ be an Rℓ-monoid. Define a mapping 0𝑑  ℳ ⟶ ℳ by 

0𝑑(𝑢) = 0,                                                      (10) 

for all 𝑢 ∈ ℋ. Then, 0𝑑 ∈ 𝒟(ℳ). Moreover, defining 𝑑1: ℳ ⟶ ℳ by 

𝑑1(𝑢) = 𝑢,                                                       (11) 

for all 𝑢 ∈ ℳ. Then, 𝑑1 ∈ 𝒟(ℳ). 

Example 2. Let ℳ = *0, 𝑢, 𝑣, 1+ be a chain. Defining operations 9 and ↪ as follows (see Table l): 

Then, (ℋ, Θ, ↪, n, 𝒘, 0,1) is an Rℓ-monoid. Now, we define 𝑑: ℳ ⟶ ℳ as follows: 

𝑑(𝑥) = {
0, 𝑥 = 0, 𝑢,
1, 𝑥 = 𝑣, 1.

                                           (12) 

Then, 𝑑 ∈ 𝒟(ℳ). 

 

Example 3. Let Mn be the standard n-valued MV-algebra, and hence an Rl-monoid, for some n ≥ 2. 
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𝑑(𝑢) = {
1

𝑛−1
, 𝑢 = 1,

0, 𝑢 ∈ ℳ𝑛 − *1+.
       (13) 

Then, 𝑑 ∈ 𝒟(ℳ). 

Remark 1. Considering the subtractive derivation 𝑑 in Example 3, we have 𝑑(𝑢 ⊛ 𝑣) = d𝑢 = 0 ≠
(d𝑢 ⊛ 𝑣)𝜔(𝑢 ⊛ d𝑣), which implies that 𝑑 is not a multiplicative derivation on Moreover, d(u⋒v) = du 
≠ 0⋓u = (du⋒v)⋓(u⋒dv), and ℳ. hence 𝑑 not a lattice derivation. This all shows that not every 
subtractive derivation is a multiplicative or lattice derivation on M 

Definition 6. A subtractive derivation 𝑑 on an Rℓ-monoid ℳ is called isotone if 𝑢 ≤ 𝑣 implies d𝑢 ≤ d𝑣 
for any 𝑢, 𝑣 ∈ ℳ. 

Example 4. The subtractive derivations in Example 2, 3 are all isotone. 

Proposition 3. If 𝑑 ∈ 𝒟(ℳ), then for any 𝑢, 𝑣 ∈ ℳ, 

(1) d0 = 0, 

(2) d𝑢 = 𝑑𝑢 ⊛ 𝑢, 

(3) d𝑢 ≤ 𝑢, 

(4) 𝑑 is isotone, 

(5) d𝑢 ⊟ 𝑣 ≤ 𝑢 ⊟ 𝑑𝑣, 

(6) d𝑢 = 𝑑1 ⊛ 𝑢 ⊛ (𝑑(𝑢∗∗)⋆, 

(7) 𝑑(𝑢 日 𝑣) ≤ d𝑢 日 d𝑣 ≤ d𝑢 ⊎ d𝑣. 

Proof 
(1) d0 = 𝑑(0 日0) = (d0 日0)® (0 日 d0) = 0. 

(2) d𝑢 = 𝑑(𝑢 ⊟ 0) = (d𝑢 日0)⊗ (𝑢日 d0) = d𝑢 ⊛ 𝑢. 

(3) d𝑢 = d𝑢 ⊛ 𝑢 ≤ 1 ⊛ 𝑢 = 𝑢. 

(4) If 𝑢 ≤ 𝑣, then 𝑢 = 𝑢 囘 𝑣 = 𝑣 ⊛ (𝑣 ↪ 𝑢), and hence 

d𝑢  = 𝑑(𝑢 กin 𝑣)

 = 𝑑(𝑣 ⊛ (𝑣𝑢))

 = 𝑑(𝑣 ⊟ (𝑣 ↪ 𝑢)⋆⋆)

 = (d𝑣 ⊟ (𝑣 ↪ 𝑢)∗∗) ⊛ (𝑣 ⊟ 𝑑(𝑣 ↪ 𝑢)⋆⋆)

 ≤ d𝑣 ⊟ (𝑣 ↪ 𝑢)⋆∗

 ≤ d𝑣.

                    (14) 
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(5) It can be directly obtained from (2) and Proposition 1 (3). 

(6) d𝑢 = 𝑑(1 ⊟ 𝑢⋆⋆) = (d1 ⊛ 𝑢) ⊛ (𝑑(𝑢⋆⋆)⋆. 

(7) Obviously from Definition 5 and (3). 

We will give some characterizations of subtractive derivations on ℱ(ℳ), which is a Gödel algebra, 
and study some of their basic algebraic properties. 

Theorem 1. Let 𝑑: ℳ ⟶ ℳ be a map on an 𝑅ℓ-monoid 𝒜. Then, the following are equivalent: 

(1) 𝑑 ∈ 𝒟(ℱ(ℳ)), 

(2) 𝑑(𝑢 ⊟ 𝑣) = d𝑢 ⊟ 𝑣, ∀𝑢, 𝑣 ∈ ℱ(ℳ). 

Proof 
(1) ⇒ (2) if 𝑑 ∈ 𝒟(ℱ(ℳ)), then we have 

𝑑(𝑢 ⊟ 𝑣)  = (d𝑢 ⊟ 𝑣) ⊛ (𝑢 ⊟ d𝑣)

 ≥ (d𝑢 ⊟ 𝑣) ⊛ (d𝑢 ⊟ 𝑣)

 = d𝑢 ⊟ 𝑣.

                                   (15) 

Conversely,  𝑑(𝑢 ⊟ 𝑣) = (d𝑢 ⊟ 𝑣) ⊛ (𝑢 ⊟ d𝑣) ≤ d𝑢 ⊟ 𝑣.   So 𝑑(𝑢 ⊟ 𝑣) = d𝑢 ⊟ 𝑣, ∀𝑢, 𝑣 ∈ ℱ(ℳ). 

(2) ⇒ (1) let 𝑑 be a map on 𝒟(ℱ(ℳ)) such that 𝑑(𝑢 ⊟ 𝑣) = d𝑢 ⊟ 𝑣,  ∀𝑢, 𝑣 ∈ ℱ(ℳ).   Then, 

d0 = 𝑑(0 ⊟ d0) = d0 日 d0 = 0. Furthermore, 0 = 𝑑(𝑢 ⊟ 𝑢) = d𝑢 ⊟ 𝑢, which implies d𝑢 ≤ 𝑢, hence 

by Proposition 3 (6), we have d𝑢 ⊟ 𝑣 ≤ 𝑢 日 d𝑣. d𝑢 ⊟ 𝑣, ∀𝑢, 𝑣 ∈ ℱ(ℳ). 

Proposition 4. Let 𝑑 ∈ 𝒟(ℳ). Then, the following hold, ∀𝑢, 𝑣 ∈ ℱ(ℳ) : 

(1) d𝑢 = d1 ⊛ 𝑢 = d1 同 𝑢, 

(2) 𝑑(𝑢 ⊛ 𝑣) = d𝑢 ⊛ d𝑣, 

(3) 𝑑(ℱ(ℳ)) ⊆ ℱ(ℳ), 

(4) 𝑑(𝑢 ⊎ 𝑣) = d𝑢 ⊎ 𝑑𝑣, 

(5) 𝑑(𝑢 ↪ 𝑣) ≤ d𝑢 ↪ 𝑑𝑣, 

(6) 𝑢 ∈ ,0, 𝑑1- iff d𝑢 = 𝑢, 

(7) d1 ≤ 𝑢 iff d𝑢 = 𝑑1. 

Proof 
(1) By Proposition 3(3), we have 𝑢 ≤ (𝑑(𝑢⋆∗)∗, and hence d𝑢 = d1 ⊛ 𝑢 ⊛ (𝑑(𝑢∗∗)∗ = d𝑖 ⊛ 𝑢 ก 
(𝑑(𝑢∗∗)∗ = d𝑖 * 𝑢 = 𝑑1 in 𝑢. 

(2) By (1), we have 𝑑(𝑢 ⊛ 𝑣) = d1 ( (𝑢 ⊛ 𝑣) = d1 ก (𝑢 ∩ 𝑣) = d𝑢 ind 𝑣. 
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(3) If 𝑢 ∈ ℱ(ℳ), then by (2), 𝑑(𝑢) = 𝑑(𝑢 ⊛ 𝑢) = d𝑢 ⊛ d𝑢, which shows 𝑑(ℱ(ℳ)) ⊆ ℱ(ℳ). 

(4) By (1), we have 𝑑(𝑢 ⊎ 𝑣) = d1ก(𝑢 ⊎ 𝑣) = (d1 ∩ 𝑢) ש (d1 m𝑣) = d𝑢 ⊎ d𝑣. 

(5) By (2), we have d𝑢 ⊛ 𝑑(𝑢 ↪ 𝑣) = 𝑑(𝑢 ⊛ (𝑢 ↪ 𝑣)) = 𝑑 (𝑢 in 𝑣) ≤ d𝑣, and hence 𝑑(𝑢 ↪ 𝑣) ≤
d𝑢 ⟶ d𝑣. 

(6) and (7) are directly from (1), and hence we omit the proof of them. 

4. The Fixed-Point Set of Subtractive Derivations on 𝐑𝓵-Monoids  

Let ℳ be an Rℓ-monoid. Define 𝐹𝒜 = *𝑢 ∈ ℳ ∣ 𝑑𝑢 = 𝑢+, which is called the fixed point set of 
subtractive derivation on an R𝑡-monoid ℳ. 

Proposition 5. If 𝑑 ∈ 𝒟(ℳ), then 𝐹𝒜 ⊆ ℱ(ℳ). 

Proof. If 𝑢 ∈ 𝐹.ℋ, then by Proposition 3 (2), d𝑢 = d𝑢 ⊛ 𝑑𝑢, and hence 𝑢 = 𝑢 ⊛ 𝑢, which shows 
𝑢 ∈ ℱ(ℳ). 

The converse of Proposition 5 is not true in general. 

Example 5. Let ℳ = *0, 𝑢, 𝑣, 1+ be a chain. Defining operations ⊛ and ↪ as follows (see Table 2 ): 

Then, (ℳ,⊛, ↪, f, 𝒘, 0,1) is an Rℓ-monoid. Defining d: ℳ ⟶ 𝒰 as follows: 

𝑑(𝑥) = {
0, 𝑥 = 0,1,
1, 𝑥 = 𝑢, 𝑣.

                                                     (16) 

But 𝐹ℋ = *0+ ⊆ *0,1+ = ℱ(ℳ) and 𝑑 ∉ 𝒟(ℳ) since 𝑑(𝑢 ⊟ 𝑣) = d𝑢 = 1 ≠ 0 = (d𝑢 ⊟ 𝑣) ⊛ (𝑢 ⊟
d𝑣). 

Proposition 6. The identity map id MUℬ ∈ 𝒟(ℳ) iff ℳ is a Gödel algebra. 

Proof. If 𝑖𝑑ℳ ∈ 𝒟(ℳ), then by Proposition 5, ℳ = 𝐹ℋ ⊆ ℱ(ℳ), and hence ℳ = ℱ(ℳ), which 
implies that ℳ is a Gödel algebra. 

Conversely, if ℳ is a Gödel algebra, then 𝑖𝑑ℳ ∈ 𝒟(ℳ). Indeed, 𝑖𝑑ℳ(𝑢 ⊟ 𝑣) = 𝑢 ⊟ 𝑣 = 𝑖𝑑ℳ𝑢 ⊟ 𝑣, by 
Theorem 1 , id  𝒰 ∈ 𝒟(ℳ). 

Proposition 6 shows that the identity map on a Gödel algebra is a subtractive derivation. Then, we 
give some conditions under which a subtractive derivation is identified. 
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Theorem 2. Let ℳ be a Gödel algebra and 𝑑 ∈ 𝒟(ℳ). Then, the following are equivalent: 

(1) 𝑑 = 𝑖𝑑ℳ , 

(2) 𝑢 ⊟ d𝑣 = d𝑢 ⊟ 𝑣, 

(3) 𝑑 is injective. 

Proof 

(1) ⇒ (2) Obviously. 

(2) ⇒ (1) if 𝑑 satisfies 𝑢 ⊟ d𝑣 = d𝑢 ⊟ 𝑣, then by Theorem 1 , d𝑢 = 𝑑(𝑢 ⊟ 0) = d𝑢 ⊟ 0 = 𝑢 ⊟ d0 =
𝑢, and hence 𝑑 = 𝑖𝑑ℳ . 

(1) ⇒ (3) Obviously. 

(3) ⇒ (1) if 𝑑 is injective and for any 𝑢 ∈ ℳ, then 𝑑(𝑢 ⊟ 𝑢) = d𝑢 ⊟ d𝑢 = 0 = 𝑑0, and hence 
𝑢 ⊟ d𝑢 = 0, which implies 𝑢 ≤ d𝑢. So d𝑢 = 𝑢 by Proposition 3 (3). 

Proposition 7. Let ℳ be a Gödel algebra and 𝑑 ∈ 𝒟(ℳ). Then 

(1) if 𝑢 ∈ ℳ and 𝑣 ∈ 𝐹. , then 𝑣 ⊟ 𝑢 ∈ 𝐹.𝜇 , 

(2) if 𝑣 ∈ 𝐹ℳ  and ∀𝑢 ∈ ℳ, then 𝑣 nin 𝑢 ∈ 𝐹ℋ. 

Proof 

(1) if 𝑢 ∈ ℳ and 𝑣 ∈ 𝐹ℋ , then 𝑑𝑢 = 𝑑 and by Theorem 1, 𝑑(𝑣 ⊟ 𝑢) = d𝑣 ⊟ 𝑢 = 𝑣 ⊟ 𝑢, which implies 
𝑣 ⊟ 𝑢 ∈ 𝐹ℋ . 

(2) If 𝑣 ∈ 𝐹ℋ  and ∀𝑢 ∈ ℳ, then by Proposition 4 (2), 𝑑( หก 𝑢) = d𝑣 ⊛ d𝑢 = 𝑣 vin 𝑢, which implies 𝑣 
in 𝑢 ∈ 𝐹𝜇. 

Proposition 8. Let ℳ be an 𝑅ℓ-monoid. Define a map ℎ𝑎: ℳ ⟶ ℳ, ℎ𝑎𝑢 = 𝑢 ⊟ 𝑎, ∀𝑥, 𝑎 ∈ ℳ, then 
ℎ𝑎 ∈ 𝒟(ℳ) iff ℎ𝑎(ℳ) ⊆ ℱ(ℳ). 

Proof. If ℎ𝑎(ℋ) ⊆ ℱ(ℳ), then by Proposition 3 (3),  
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(ℎ𝑎𝑢 ⊟ 𝑣) ⊛ (𝑢 ⊟ ℎ𝑎𝑣)  = (ℎ𝑎𝑢 ⊛ 𝑢) ⊛ (𝑣⋆ ⊕ ℎ𝑎𝑣⋆)

 = (ℎ𝑎𝑢 ⊕ 𝑢) ⊕ (𝑣 ⊎ ℎ𝑎𝑣)⋆

 = ℎ𝑎𝑢 ⊛ 𝑣⋆

 = (𝑢 ⊟ 𝑎) ⊛ 𝑣∗

 = (𝑢 ⊟ 𝑎) ⊟ 𝑣

 = (𝑢 ⊟ 𝑣) ⊟ 𝑎

 = ℎ𝑎(𝑢 ⊟ 𝑣),

 (17) 

which implies ℎ𝑎 ∈ 𝒟(ℳ). 

Conversely, if ℎ𝑎 ∈ 𝒟(ℳ), then  

𝑢 ⊟ 𝑎  = ℎ𝑎𝑢

 = ℎ𝑎(𝑢 ⊟ 0)

 = (ℎ𝑎𝑢 ⊟ 0) ⊕ (𝑢 ⊟ ℎ𝑎0)

 = (𝑢 ⊟ 𝑎) ⊛ (𝑢 ⊟ 𝑎), ∀𝑢 ∈ ℳ,

 (18) 

which implies  

ℎ𝑎(ℳ) ⊆ ℱ(ℳ). 

Theorem 3. If 𝑑 ∈ 𝒟(ℳ) such that 𝑑 is injective, then 𝐹ℳ  is a lattice ideal iff ℳ is a Gödel algebra. 

Proof. If 𝑑 ∈ 𝒟(ℳ) such that 𝑑 is injective and 𝒰 is a Gödel algebra, then by Theorem 2(3), 𝑑 = 𝑖𝑑𝒜 , 
and hence 𝐹𝒜 = ℳ, which shows that 𝐹𝒜  is a lattice ideal. 

Conversely, if 𝐹𝒜  is a lattice ideal and 𝑑 ∈ 𝒟(ℳ) such that 𝑑 is injective, then 

𝑑((𝑑1)⋆)  = (1 ⊟ 𝑑1)

 = (𝑑1 ⊟ 𝑑1) ⊛ (1 ⊟ 𝑑𝑑1)

 = 0
 = 𝑑0,

 (19) 

that is 𝑑1 = 1, and hence ℋ = 𝐹ℳ ⊆ ℱ(ℳ), which shows that ℳ is a Gödel algebra. 

Proposition 9. If 𝑑𝑎(ℳ) ⊆ ℱ(ℳ), then 𝑑𝑎 ∈ 𝒟(ℳ). 

Proof. If 𝑑𝑎(ℳ) ⊆ ℱ(ℳ), then by Proposition 4 (3), ∀𝑢, 𝑣 ∈ ℳ, 

(𝑑𝑎𝑢 ⊟ 𝑣) ⊕ (𝑢 ⊟ 𝑑𝑎𝑣)  = (𝑑𝑎𝑢 ⊕ 𝑢) ⊕ (𝑣∗ ⊕ 𝑑𝑎𝑣∗)

 = (𝑑𝑎𝑢 ⊕ 𝑢) ⊛ (𝑣 ⊎ 𝑑𝑎𝑣)∗

 = 𝑑𝑎𝑢 ⊛ 𝑣∗

 = (𝑎 ⊕ 𝑢) ⊕ 𝑣∗

 = 𝑎 ⊕ (𝑢 ⊟ 𝑣)

 = 𝑑𝑎(𝑢 ⊟ 𝑣),

 (20) 

which implies  

𝑑𝑎 ∈ 𝒟(ℳ). 
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Corollary 1. If ℳ is a Gödel algebra, then 𝑑𝑎 ∈ 𝒟(ℳ). 

Proposition 10. If ℳ is a Gödel algebra, then the following hold: 

(1) 𝑑1 ∈ 𝐹𝒜 , 

(2) 𝑑(ℳ) = 𝐹ℳ . 

Proof 

(1) It follows from Proposition 4 (1). 

(2) It is obvious that 𝑑(ℳ) ⊇ 𝐹𝒜 . Conversely, if 𝑢 ∈ 𝑑(ℳ), then there exists 𝑣 ∈ ℳ such that 𝑢 = d𝑣. 
Since 𝑢 = 𝑑𝑣 ≤ 𝑑1 and 𝑑1 ∈ 𝐹𝒜 , by Theorem 2, 𝑢 ∈ 𝐹ℳ , and hence 𝑑(ℳ) ⊆ 𝐹ℳ . 

Theorem 4. If ℳ is a Gödel algebra and 𝐼 is a lattice ideal with the greatest element, then there exists 
𝑑 ∈ 𝒟(ℳ) such that 𝐹./ = 𝐼. 

Proof. If 𝑏 = V𝑎∈𝐼𝑎 ∈ 𝐼 and 𝑑𝑏 ∈∈ 𝒟(ℳ), then 𝑑𝑏𝑢 ≤ 𝑏 with 𝑏 ∈ 𝐼, and hence 𝑑𝑏(ℋ) ⊆ 𝐼. By Theorem 
3, 𝑑𝑏 ∈ 𝒟(ℳ). Moreover, if 𝑢 ∈ 𝐼, then 𝑑𝑏𝑢 = 𝑢𝑚𝑏, and hence 𝑢 ∈ 𝐹.𝑑 with respect to 𝑑𝑏 , which 
implies 𝐼 ⊆ 𝐹ℳ . Furthermore, 𝐹𝒜 = 𝑑(ℳ), and hence 𝐹𝒜 ⊆ 𝐼 and 𝐹𝒜 = 𝐼. 

5. The Relations between Kinds of Derivations on 𝐑𝓵-Monoids 

In this section, we will discuss the relations between subtractive derivations and other derivations on 
Rℓ-monoids. In particular, we discuss the relations among subtractive derivations, lattice derivations, 
and multiplicative derivations on Rℓ-monoids. 

Proposition 11. Every subtractive derivation is multiplicative on a Gödel algebra ℳ. 

Proof. It follows from Propositions 4 (1) and (3). 

Proposition 12. If 𝑑 is a multiplicative derivation on an 𝑅ℓ -monoid ℳ and 𝑑(ℳ) ⊆ ℐ(ℳ), then 
𝑑 ∈ 𝒟(ℳ). 

Proof. It follows from Propositions 2 and Corollary 1. 

Proposition 13 (see [22]). If 𝑑 is a multiplicative derivation on an 𝑅ℓ-monoid ℳ and 𝑑1 ∈ ℱ(ℳ), 
then the following are equivalent: 

(1) 𝑑 is isotone, 

(2) d𝑢 = 𝑑1%𝑢. 

Proof. It follows from Propositions 4 (1) and (3). 

Proposition 14 (see [22]). If 𝑑 is a lattice derivation on an 𝑅ℓ-monoid ℳ, then the following are 
equivalent: 

(1) 𝑑 is isotone; 

(2) d𝑢 = 𝑑1 m𝑢. 

Proof. It follows from Propositions 4 (1) and (3). 
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Theorem 5. If 𝑑 is a map such that 𝑑l ∈ ℐ(ℳ) on an 𝑅ℓ -monoid ℳ, then 𝑑 is a multiplicative 
derivation iff it is a lattice derivation. 

Proof.  

It follows from Propositions 13 and 14. 

Proposition 15. Every subtractive derivation is multiplicative on a Gödel algebra 𝑀. 

Proof.  

It follows from Proposition 11. 

Corollary 2. If 𝑑 is a lattice derivation on an 𝑅ℓ-monoid ℳ and 𝑑(ℳ) ⊆ ℱ(ℳ), then 𝑑 ∈ 𝒟(ℳ). 

Corollary 3. Subtractive derivations and lattice derivations are equivalent on the Gödel algebra. 

6. Conclusions 

The concept of subtractive derivations proves valuable when analyzing structures and characteristics 
within the realm of fuzzy logic algebra. To uncover shared traits among subtractive derivations in t-
norm-based logical algebras, we introduce these derivations within RL-monoids and establish certain 
defining characteristics. Furthermore, we explore the connections between the fixed point set of 
subtractive derivations and other forms of derivations within RL-monoids. Looking ahead, our future 
work will center on investigating representations of RL-monoids using algebraic structures derived 
from the set of subtractive derivations. 
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