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Abstract 

This study introduces a novel approach for partitioning isomorphic Hamiltonian circuits in full graphs. The 

isomorphism classes will be constructed using matrix theory concepts. This technique focuses on 

categorizing Hamiltonian circuits using matrix transposition theory. This idea will be shown by 

decomposing and partitioning a full graph of order five. This technique develops and proves a fresh 

outcome.  

Keywords: Decomposition, Complete Graphs, Isomorphism, Hamiltonian Circuits.  

Introduction 

An isomorphism of a graph is an overwhelmingly interesting problem due to the fact that it can be adopted 

in the field of organic chemistry to determine two identical molecules (Milan (1977), Jean-Loup (1998)). In 

graph theory, a complete graph 𝐾is known to have 𝑛! Hamiltonian circuits (HC) and (𝑛−1)!/ 2 distinct HC 

(Riaz and Khiyal (2006), Douglas (2001)). The isomorphic HC among those 𝑛! circuits need to be 

classified to produce the distinct HC. Thus, in this paper, we aim to construct a cutting-edge method to 

partition isomorphic HC in 𝐾𝑛. The idea of adjacency matrix and matrix transposition are considered in 

order to classify the isomorphism classes of the HC. The definitions needed along this paper are given 

below. 

Definition 1 A complete graph 𝐾𝑛 is a simple graph with 𝑛 vertices whose vertices are pairwise adjacent.  

Definition 2 A Hamiltonian circuit is a circuit that starts and ends at the same vertex, and visits each vertex 

exactly once. 

Definition 3 Let 𝐶1 ∗ = (𝑉1, 𝐸1 ) and 𝐶2 ∗ = (𝑉2, 𝐸2 ) be two Hamiltonian circuits. 𝐶1 ∗ ≅ 𝐶2 ∗ if there is 

a one-to-one function 𝑓: 𝑉(𝐶1 ∗ ) → 𝑉(𝐶2 ∗ ) such that 𝑢𝑣 ∈ 𝐸 (𝐶1 ∗ ) if and only if 𝑓(𝑢)𝑓(𝑣) ∈ (𝐶2 ∗ ).  

Definition 4 Suppose 𝐺 = (𝑉, 𝐸) where 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 ∈ 𝑉. The adjacency matrix A of 𝐺 (or A𝐺), with 

respect to this listing of vertices, is the 𝑛 × 𝑛 matrix with 1 as its (𝑖,𝑗)th entry when 𝑣𝑖 and 𝑣𝑗 are adjacent, 0 

as its (𝑖,𝑗)th entry when they are not adjacent.  
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Definition 5 If M is a 𝑚 × 𝑛 matrix, then the transpose matrix of M denoted by M𝑇 is an 𝑛 × 𝑚 matrix, 

where the columns of M be the rows of M𝑇 and the rows of M be the columns of M𝑇 .  

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, a matrix M 

is symmetric if M = M𝑇. 

Definition 6 Let 𝐶1 ∗ be a circuit with direction (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛−1, 𝑥𝑛, 𝑥1 ). Then, a circuit 𝐶2 ∗ is a 

mirror image to circuit 𝐶1 ∗ if the direction of 𝐶2 ∗ is (𝑥1, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥3, 𝑥2, 𝑥1).  

Definition 7 Let 𝐶1 ∗ and 𝐶2 ∗ be two circuits with 𝑛 vertices. If 𝐶2 ∗ is the mirror image of 𝐶1 ∗ , then 𝐶1 

∗ ≅ 𝐶2 ∗ .  

Definition 8 If the mapping of 𝐶1 ∗ and 𝐶2 ∗ is (1, 𝑎)(2, 𝑏)(3, 𝑐) … (𝑛, 𝑧) and (𝑧, 𝑛) … (𝑐, 3)(𝑏, 2)(𝑎, 1) 

respectively, then 𝐶1 ∗ and 𝐶2 ∗ has an opposite mapping, where 𝑎, 𝑏, 𝑐, … , 𝑧 are the images.  

Definition 9 Suppose the sets of vertices {𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑛} ∈ 𝐶1 ∗ and {𝑥1𝑎, 𝑥2𝑏, 𝑥3𝑐, …, 𝑥𝑛𝑧} ∈ 𝐶2 ∗ . 

A function 𝑔 = ( 𝑥1 𝑥1𝑎 𝑥2 𝑥2𝑏 𝑥3 𝑥3𝑐 … … 𝑥𝑛 𝑥𝑛𝑧) maps the vertices {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 } of 𝐶1 ∗ to 

other vertices {𝑥1𝑎, 𝑥2𝑏, 𝑥3𝑐, … , 𝑥𝑛𝑧} of 𝐶2 ∗ where {𝑥1𝑎, 𝑥2𝑏, 𝑥3𝑐, … , 𝑥𝑛𝑧} are the images. That is, 

𝑥1 ⟼ 𝑥2𝑏, 𝑥2 ⟼ 𝑥3𝑐, …, 𝑥𝑛 ⟼ 𝑥𝑛𝑧 for 𝑛 ∈ ℤ +. Then, the mapping is written as a product of 

transposition (𝑥1, 𝑥1𝑎)(𝑥2, 𝑥2𝑏) … (𝑥𝑛, 𝑥𝑛𝑧). 

Methodology 

 

Figure 1: A complete graph, 𝐾5. 

Now we consider 𝐾5 as shown in Figure 1, it can be decomposed into (5 − 1)! = 24 HC from 𝐾5 (Riyaz 

and Khiyal,2006). Since there are (𝑛−1)! 2 distinct HC in 𝐾5 (Douglas,2001), we use the idea of adjacency 

matrix and transpose matrix to partition the isomorphism HC to get the distinct HC. Among the twenty four 

circuits, as an example, we provide several HC from 𝐾5 in Figure 2. Then, the adjacency matrix as well as 

its transpose are presented in Table 1. Then, we investigate which matrices are symmetric. 
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Figure 2: Several HC from 𝐾5. 

 

 

Table 1: Adjacency matrix and its transpose for 𝐾5 
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There are symmetric matrices produced in Table 1, i.e. 𝐴 𝑇 = 𝐸, 𝐵 𝑇 = 𝐹, 𝐶 𝑇 = 𝐷, 𝐷 𝑇 = 𝐶, 𝐸 𝑇 = 𝐴, and 𝐹 

𝑇 = 𝐵. Without loss of generality, since 𝐾5 has twenty four HC, thus 𝐾5 can be partitioned into twelve 

distinct HC 



AIJRA Vol. I Issue III www.ijcms2015.co  ISSN 2455-5967 

 

 A Study on Isomorphism of Partitioning Hamiltonian Circuits in Complete Graphs                   

Dr. Suman Jain  

 

 

 

 

 

 

 

 

 

 

 

 

72.5 

RESULT  

From the case 𝐾5 discussed in previous section, a theorem is produced as shown in the next paragraph.  

A complete graph 𝐾𝑛 is known can be partitioned into (𝑛 − 1)! HC (Riyaz and Khiyal,2006). Suppose a HC 

as shown in Figure 3. To partition the isomorphic classes of the circuits, we use the idea of adjacency 

matrices and transpose matrices as discussed below.  

Step 1: Find the adjacency matrices of each HC.  

Step 2: Find the transpose matrices of each adjacency matrix obtained in Step 1.  

Step 3: Investigate which matrices are symmetric to partition the isomorphic circuits.  

Step 4: Determine the distinct HC. Without loss of generality, we have the following theorem 

Theorem 1. Let 𝑃 and 𝑄 be two Hamiltonian circuits with opposite direction. If the adjacency matrix of 𝑃 

equals to the transpose of adjacency matrix of 𝑄 (P = Q 𝑇 ), then circuit 𝑃 ≅ � 

Proof. Suppose 𝑃 and 𝑄 are two Hamiltonian circuits with 𝑛 vertices as shown in Figure 3. 

 

Figure 3: A complete graph 𝐾𝑛 

Both 𝑃 and 𝑄 have 𝑛 vertices, 𝑛 edges, and vertices of degree two. Because 𝑃 and 𝑄 agree with respect to 

these invariants, we define a function 𝑓 to investigate the one-to-one function. Since all vertices in both 𝑃 

and 𝑄 have degree two, then we have 𝑓(𝑢𝑛 ) = 𝑣3, 𝑓(𝑢1 ) = 𝑣2, 𝑓(𝑢2 ) = 𝑣1, 𝑓(𝑢3 ) = 𝑣𝑛, 𝑓(𝑢4 ) = 𝑣𝑛−1, 

…, 𝑓(𝑢𝑛−1 ) = 𝑣4. To examine whether 𝑓 preserves edges, we examine the adjacency matrices of 𝑃 and 𝑄 

as well as their transpose, with the rows and columns labeled by the images of their corresponding vertices. 
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From the above matrices, we have adjacency matrices P = Q 𝑇 and Q = P 𝑇 which shows that 𝑓 preserves 

the edges. Thus, we conclude that 𝑃 and 𝑄 are isomorphic.  

DISCUSSIONS  

We have developed a new approach in partitioning the isomorphic classes of HC in 𝐾𝑛. A case of 𝑛 = 5 is 

discussed as a basis to find the isomorphism among the HC. A theorem has been produced to prove that two 

circuits are isomorphic if both circuits share the same edges. 
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